Fabricating a Raman spectrometer using an optical pickup unit and pulsed power

Author:

Cho Young Chai,Ahn Sung Il

Abstract

AbstractAlthough Raman spectroscopy is a major analytical tool in modern chemical experiments, commercial Raman spectrometers remain very pricey for educational and research purposes in individual university laboratories. Thus, this study focused on the structural similarity between the Raman spectrometer and an optical pickup unit (OPU), which is an inexpensive compact optical device used for a part of optical discs. The study investigated whether or not a full set of Raman spectrometer can be developed at a cost of less than 1,000 US$. The OPU-based Raman spectrometer was fabricated using 3D printer-made components, a Raman edge filter, and a laser diode with a wavelength of 520 nm as the light source. A function generator was used as a pulsed power source to analyze the characteristics of the OPU Raman spectrometer according to various frequencies and duty ratios. When using a pulsed DC power supply, the laser wavelength tended to move to a longer wavelength with increases in duty ratios. That is, the higher the frequency at the same duty ratio, the weaker the background light intensity compared with the scattered Raman signal intensity. The findings illustrate that Raman signal strength can be adjusted by adjusting the focal length of the objective lens of the OPU through an external adjustment of an additional DC power. In the Raman spectra of all solid and liquid samples used, the maximum error rate reached approximately 11 cm−1, whereas the maximum intensity deviation reached approximately ± 6%. The cost of the complete OPU Raman spectrometer is less than 1,100 US$ using a function generator as power source and less than 930 US$ using a DC adapter. If the optical density (OD) 6 filter can be replaced with the OD 4 filter, then the costs are expected to decrease to approximately 730 US$.

Funder

Basic Science Research Program through the National Research Foundation by the Ministry of Science, ICT of Korea.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3