Differences in gynecologic tumor development in Amhr2-Cre mice with KRASG12D or KRASG12V mutations

Author:

Kun Eucharist H. S.,Tsang Yvonne T. M.,Lin Sophia,Pan Sophia,Medapalli Tejas,Malpica Anais,Richards JoAnne S.,Gershenson David M.,Wong Kwong-Kwok

Abstract

AbstractHow different KRAS variants impact tumor initiation and progression in vivo has not been thoroughly examined. We hypothesize that the ability of either KRASG12D or KRASG12V mutations to initiate tumor formation is context dependent. Amhr2-Cre mice express Cre recombinase in tissues that develop into the fallopian tubes, uterus, and ovaries. We used these mice to conditionally express either the KRASG12V/+or KRASG12D/+ mutation. Mice with the genotype Amhr2-Cre Pten(fl/fl) KrasG12D/+(G12D mice) had abnormal follicle structures and developed low-grade serous ovarian carcinomas with 100% penetrance within 18 weeks. In contrast, mice with the genotype Amhr2-Cre Pten(fl/fl) KrasG12V/+ (G12V mice) had normal follicle structures, and about 90% of them developed uterine tumors with diverse histological features resembling those of leiomyoma and leiomyosarcoma. Granulosa cell tumors also developed in G12V mice. Differences in cell-signaling pathways in the uterine tissues of G12D and G12V mice were identified using RNA sequencing and reverse-phase protein array analyses. We found that CTNNB1, IL1A, IL1B, TNF, TGFB1, APP, and IL6 had the higher activity in G12V mice than in G12D mice. These mouse models will be useful for studying the differences in signaling pathways driven by KrasG12V/+ or KrasG12D/+ mutations to aid development of targeted therapies for specific KRAS mutant variants. Our leiomyoma model driven by the KrasG12V/+ mutation will also be useful in deciphering the malignant progression from leiomyoma to leiomyosarcoma.

Funder

National Cancer Institute

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3