SSD with multi-scale feature fusion and attention mechanism

Author:

Liu QiangORCID,Dong Lijun,Zeng Zhigao,Zhu Wenqiu,Zhu Yanhui,Meng Chen

Abstract

AbstractIn the field of the Internet of Things, image acquisition equipment is the very important equipment, which will generate lots of invalid data during real-time monitoring. Analyzing the data collected directly from the terminal by edge calculation, we can remove invalid frames and improve the accuracy of system detection. SSD algorithm has a relatively light and fast detection speed. However, SSD algorithm do not take full advantage of both shallow and deep information of data. So a multiscale feature fusion attention mechanism structure based on SSD algorithm has been proposed in this paper, which combines multiscale feature fusion and attention mechanism. The adjacent feature layers for each detection layer are fused to improve the feature information expression ability. Then, the attention mechanism is added to increase the attention of the feature map channels. The results of the experiments show that the detection accuracy of the optimized model is improved, and the reliability of edge calculation has been improved.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3