Improved Retinex algorithm for low illumination image enhancement in the chemical plant area

Author:

Wang Xin,Hu Shaolin,Li Jichao

Abstract

AbstractDue to the complexity of the chemical plant area at night and the harsh lighting environment, the images obtained by monitoring equipment have issues such as blurred details and insufficient contrast, which is not conducive to the subsequent target detection work. A low illumination image enhancement model based on an improved Retinex algorithm is proposed to address the above issues. The model consists of a decomposition network, an adjustment network, and a reconstruction network. In the decomposition network, a new decomposition network USD-Net is established based on U-Net, which decomposes the original image into illumination and reflection maps, enhancing the extraction of image details and low-frequency information; Using an adjustment network to enhance the decomposed lighting image, and introducing a Mobilenetv3 lightweight network and residual structure to simplify the network model and improve the contrast of the image; In the reconstruction network, the BM3D method is used for image denoising to enhance the ability to restore image detail features; The enhanced illumination and reflection images were fused based on the Retinex algorithm to achieve low illumination image enhancement in the chemical plant area. This article uses five image quality evaluation indicators, namely Peak Signal-to-Noise Ratio, Structural Similarity Index, Natural Image Quality Evaluator, Interpolation Error, and Level of Effort, to compare eight traditional or modern algorithms and evaluate three different types of datasets. The experimental results show that the improved algorithm enhances the texture details of the image, improves the contrast and saturation of the image, and has good stability and robustness, which can effectively meet the needs of low illumination image enhancement in chemical plant areas.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3