Research on image recognition of three Fritillaria cirrhosa species based on deep learning

Author:

Chen Yuxiu,Li Yuyan,Zhang Sheng

Abstract

AbstractBased on the deep learning method, a network model that can quickly and accurately identify the species of Fritillaria cirrhosa species was constructed. The learning method based on deep residual convolutional neural network was used to input the unprocessed original image directly as input, and the features of the image were extracted through convolution and pooling operations. On this basis, the ResNet34 model was improved, and the additional fully connected layer was added in front of the Softmax classifier to improve the learning ability of the network model. Total of 3915 images of three kinds of Fritillaria cirrhosa were used as data sources for the experiments, among which 160 images of each type were randomly selected to form the validation set. The final training set recognition accuracy rate was 95.8%, the validation set accuracy rate reached 92.3%, and the test set accuracy rate was 88.7%. The image recognition method of Fritillaria cirrhosa based on deep learning proposed in this paper is effective and feasible, which can quickly and accurately identify the species of Fritillaria cirrhosa species, and provides a new idea for the intelligent recognition of Chinese medicinal materials.

Funder

Hunan Provincial Department of Education Scientific Research Project

scientific research and innovation team construction project of Hunan Food and Drug Vocational College

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3