High frequency conductivity decomposition by solving physically constraint underdetermined inverse problem in human brain

Author:

Kwon Oh-In,Lee Mun Bae,Jahng Geon-Ho

Abstract

AbstractThe developed magnetic resonance electrical properties tomography (MREPT) can visualize the internal conductivity distribution at Larmor frequency by measuring the B1 transceive phase data from magnetic resonance imaging (MRI). The recovered high-frequency conductivity (HFC) value is highly complex and heterogeneous in a macroscopic imaging voxel. Using high and low b-value diffusion weighted imaging (DWI) data, the multi-compartment spherical mean technique (MC-SMT) characterizes the water molecule movement within and between intra- and extra-neurite compartments by analyzing the microstructures and underlying architectural organization of brain tissues. The proposed method decomposes the recovered HFC into the conductivity values in the intra- and extra-neurite compartments via the recovered intra-neurite volume fraction (IVF) and the diffusion patterns using DWI data. As a form of decomposition of intra- and extra-neurite compartments, the problem to determine the intra- and extra-neurite conductivity values from the HFC is still an underdetermined inverse problem. To solve the underdetermined problem, we use the compartmentalized IVF as a criterion to decompose the electrical properties because the ion-concentration and mobility have different characteristics in the intra- and extra-neurite compartments. The proposed method determines a representative apparent intra- and extra-neurite conductivity values by changing the underdetermined equation for a voxel into an over-determined minimization problem over a local window consisting of surrounding voxels. To suppress the noise amplification and estimate a feasible conductivity, we define a diffusion pattern distance to weight the over-determined system in the local window. To quantify the proposed method, we conducted a simulation experiment. The simulation experiments show the relationships between the noise reduction and the spatial resolution depending on the designed local window sizes and diffusion pattern distance. Human brain experiments (five young healthy volunteers and a patient with brain tumor) were conducted to evaluate and validate the reliability of the proposed method. To quantitatively compare the results with previously developed methods, we analyzed the errors for reconstructed extra-neurite conductivity using existing methods and indirectly verified the feasibility of the proposed method.

Funder

Konkuk University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3