Convolutional neural network-based respiration analysis of electrical activities of the diaphragm

Author:

Lee Hyun-Gyu,Lee Gahee,Lee Juyoung

Abstract

AbstractThe electrical activity of the diaphragm (Edi) is considered a new respiratory vital sign for monitoring breathing patterns and efforts during ventilator care. However, the Edi signal contains irregular noise from complex causes, which makes reliable breathing analysis difficult. Deep learning was implemented to accurately detect the Edi signal peaks and analyze actual neural breathing in premature infants. Edi signals were collected from 17 premature infants born before gestational age less than 32 weeks, who received ventilatory support with a non-invasive neurally adjusted ventilatory assist. First, a local maximal detection method that over-detects candidate Edi peaks was used. Subsequently, a convolutional neural network-based deep learning was implemented to classify candidates into final Edi peaks. Our approach showed superior performance in all aspects of respiratory Edi peak detection and neural breathing analysis compared with the currently used recording technique in the ventilator. The method obtained a f1-score of 0.956 for the Edi peak detection performance and $${R}^{2}$$ R 2 value of 0.823 for respiratory rates based on the number of Edi peaks. The proposed technique can achieve a more reliable analysis of Edi signals, including evaluation of the respiration rate in premature infants.

Funder

Inha University Hospital research grant

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3