Abstract
AbstractPreclinical radiation research lacks standardized dosimetry procedures that provide traceability to a primary standard. Consequently, ensuring accuracy and reproducibility between studies is challenging. Using 3D printed murine phantoms we undertook a dosimetry audit of Xstrahl Small Animal Radiation Research Platforms (SARRPs) installed at 7 UK centres. The geometrically realistic phantom accommodated alanine pellets and Gafchromic EBT3 film for simultaneous measurement of the dose delivered and the dose distribution within a 2D plane, respectively. Two irradiation scenarios were developed: (1) a 10 × 10 mm2 static field targeting the pelvis, and (2) a 5 × 5 mm2 90° arc targeting the brain. For static fields, the absolute difference between the planned dose and alanine measurement across all centres was 4.1 ± 4.3% (mean ± standard deviation), with an overall range of − 2.3 to 10.5%. For arc fields, the difference was − 1.2% ± 6.1%, with a range of − 13.1 to 7.7%. EBT3 dose measurements were greater than alanine by 2.0 ± 2.5% and 3.5 ± 6.0% (mean ± standard deviation) for the static and arc fields, respectively. 2D dose distributions showed discrepancies to the planned dose at the field edges. The audit demonstrates that further work on preclinical radiotherapy quality assurance processes is merited.
Funder
National Centre for the Replacement Refinement and Reduction of Animals in Research
Cancer Research UK
NIHR Manchester Biomedical Research Centre
Publisher
Springer Science and Business Media LLC
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献