Abstract
AbstractThe efficient acquisition and transport of nutrients by plants largely depend on the root architecture. Due to the absence of complex microbial network interactions and soil heterogeneity in a restricted soilless medium, the architecture of roots is a function of genetics defined by the soilless matrix and exogenously supplied nutrients such as nitrogen (N). The knowledge of root trait combinations that offer the optimal nitrogen use efficiency (NUE) is far from being conclusive. The objective of this study was to define the root trait(s) that best predicts and correlates with vegetative biomass under differed N treatments. We used eight image-derived root architectural traits of 202 diverse spinach lines grown in two N concentrations (high N, HN, and low N, LN) in randomized complete blocks design. Supervised random forest (RF) machine learning augmented by ranger hyperparameter grid search was used to predict the variable importance of the root traits. We also determined the broad-sense heritability (H) and genetic (rg) and phenotypic (rp) correlations between root traits and the vegetative biomass (shoot weight, SWt). Each root trait was assigned a predicted importance rank based on the trait’s contribution to the cumulative reduction in the mean square error (MSE) in the RF tree regression models for SWt. The root traits were further prioritized for potential selection based on the rg and SWt correlated response (CR). The predicted importance of the eight root traits showed that the number of root tips (Tips) and root length (RLength) under HN and crossings (Xsings) and root average diameter (RAvdiam) under LN were the most relevant. SWt had a highly antagonistic rg (− 0.83) to RAvdiam, but a high predicted indirect selection efficiency (− 112.8%) with RAvdiam under LN; RAvdiam showed no significant rg or rp to SWt under HN. In limited N availability, we suggest that selecting against larger RAvdiam as a secondary trait might improve biomass and, hence, NUE with no apparent yield penalty under HN.
Funder
USDA-National Institute of Food and Agriculture Specialty Crops Research Initiative
USDA-SCMP
Publisher
Springer Science and Business Media LLC
Reference63 articles.
1. Gruber, B. D., Giehl, R. F., Friedel, S. & von Wirén, N. Plasticity of the Arabidopsis root system under nutrient deficiencies. Plant Physiol. 163, 161–179 (2013).
2. Sun, C.-H., Yu, J.-Q. & Hu, D.-G. Nitrate: a crucial signal during lateral roots development. Front. Plant. Sci. 8, 485 (2017).
3. Socolow, R. H. Nitrogen management and the future of food: lessons from the management of energy and carbon. Proc. Natl. Acad. Sci. 96, 6001–6008 (1999).
4. Marvi, M. S. P. Effect of nitrogen and phosphorous rates on fertilizer use efficiency in lettuce and spinach. J. Hortic. For. 1, 140–147 (2009).
5. Schenk, M., Heins, B. & Steingrobe, B. The significance of root development of spinach and kohlrabi for N fertilization. Plant Soil 135, 197–203 (1991).
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献