Disclosing crystal nucleation mechanism in lithium disilicate glass through molecular dynamics simulations and free-energy calculations

Author:

Lodesani Federica,Menziani Maria Cristina,Maeda Kei,Takato Yoichi,Urata Shingo,Pedone Alfonso

Abstract

AbstractUnraveling detailed mechanism of crystal nucleation from amorphous materials is challenging for both experimental and theoretical approaches. In this study, we have examined two methods to understand the initial stage of crystal precipitation from lithium disilicate glasses using molecular dynamics simulations. One of the methods is a modified exploring method to find structurally similar crystalline clusters in the glass models, enabling us to find three different embryos, such as Li2Si2O5 (LS2), Li2SiO3 (LS) and Li3PO4 (LP), in the 33Li2O·66SiO2·1P2O5 glass (LS2P1), in which P2O5 is added as a nucleating agent. Interestingly, LS2 and LP crystals were found inside the LS2P1 glass while LS crystal appeared on the glass surface, which agrees with experimental observations. The other method is free energy calculation using a subnano-scale spherical crystal embedded in the glass model. This method, which we called Free-Energy Seeding Method (FESM), allows us to evaluate free energy change as a function of crystal radius and to identify critical size of the crystal precipitation. The free energy profiles for LS and LS2 crystal nuclei in the LS2 glass models possess maximum energy at a critical radius as expected by classical nucleation theory. Furthermore, the critical radius and the energy barrier height agree well with recent experimental investigation, proving the applicability of this method to design glass–ceramics by atomistic modeling.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3