Comparative Proteomic Analysis in Scar-Free Skin Regeneration in Acomys cahirinus and Scarring Mus musculus

Author:

Yoon Jung Hae,Cho KunORCID,Garrett Timothy J.,Finch Paul,Maden Malcolm

Abstract

AbstractThe spiny mouse, Acomys cahirinus displays a unique wound healing ability with regeneration of all skin components in a scar-free manner. To identify orchestrators of this regenerative response we have performed proteomic analyses of skin from Acomys and Mus musculus before and after wounding. Of the ~2000 proteins identified many are expressed at similar levels in Acomys and Mus, but there are significant differences. Following wounding in Mus the complement and coagulation cascades, PPAR signaling pathway and ECM-receptor interactions predominate. In Acomys, other pathways predominate including the Wnt, MAPK, the ribosome, proteasome, endocytosis and tight junction pathways. Notable among Acomys specific proteins are several ubiquitin-associated enzymes and kinases, whereas in Mus immuno-modulation proteins characteristic of inflammatory response are unique or more prominent. ECM proteins such as collagens are more highly expressed in Mus, but likely more important is the higher expression of matrix remodeling proteases in Acomys. Another distinctive difference between Acomys and Mus lies in the macrophage-produced arginase 1 is found in Mus whereas arginase 2 is found in Acomys. Thus, we have identified several avenues for experimental approaches whose aim is to reduce the fibrotic response that the typical mammal displays in response to wounding.

Funder

W. M. Keck Foundation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3