Prediction of lung papillary adenocarcinoma-specific survival using ensemble machine learning models

Author:

Xia Kaide,Chen Dinghua,Jin Shuai,Yi Xinglin,Luo Li

Abstract

AbstractAccurate prognostic prediction is crucial for treatment decision-making in lung papillary adenocarcinoma (LPADC). The aim of this study was to predict cancer-specific survival in LPADC using ensemble machine learning and classical Cox regression models. Moreover, models were evaluated to provide recommendations based on quantitative data for personalized treatment of LPADC. Data of patients diagnosed with LPADC (2004–2018) were extracted from the Surveillance, Epidemiology, and End Results database. The set of samples was randomly divided into the training and validation sets at a ratio of 7:3. Three ensemble models were selected, namely gradient boosting survival (GBS), random survival forest (RSF), and extra survival trees (EST). In addition, Cox proportional hazards (CoxPH) regression was used to construct the prognostic models. The Harrell’s concordance index (C-index), integrated Brier score (IBS), and area under the time-dependent receiver operating characteristic curve (time-dependent AUC) were used to evaluate the performance of the predictive models. A user-friendly web access panel was provided to easily evaluate the model for the prediction of survival and treatment recommendations. A total of 3615 patients were randomly divided into the training and validation cohorts (n = 2530 and 1085, respectively). The extra survival trees, RSF, GBS, and CoxPH models showed good discriminative ability and calibration in both the training and validation cohorts (mean of time-dependent AUC: > 0.84 and > 0.82; C-index: > 0.79 and > 0.77; IBS: < 0.16 and < 0.17, respectively). The RSF and GBS models were more consistent than the CoxPH model in predicting long-term survival. We implemented the developed models as web applications for deployment into clinical practice (accessible through https://shinyshine-820-lpaprediction-model-z3ubbu.streamlit.app/). All four prognostic models showed good discriminative ability and calibration. The RSF and GBS models exhibited the highest effectiveness among all models in predicting the long-term cancer-specific survival of patients with LPADC. This approach may facilitate the development of personalized treatment plans and prediction of prognosis for LPADC.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3