Genetic diversity, population structure, and DNA fingerprinting of Ailanthus altissima var. erythrocarpa based on EST-SSR markers

Author:

Zhang Manman,Zheng Conghui,Li Jida,Wang Xueyong,Liu Chunpeng,Li Xiangjun,Xu Zhenhua,Du Kejiu

Abstract

AbstractAilanthus altissima var. erythrocarpa is an A. altissima variety with high economic, ecological and ornamental value, but there have been no reports on the development of SSR primers for it. According to the SSR primer information provided by the transcriptome of A. altissima var. erythrocarpa, 120 individuals with different redness levels were used to screen polymorphic primers. Transcriptomic analysis revealed 10,681 SSR loci, of which mononucleotide repeats were dominant (58.3%), followed by dinucleotide and trinucleotide repeats (16.6%, 15.1%) and pentanucleotide repeats (0.2%). Among 140 pairs of randomly selected primers, nineteen pairs of core primers with high polymorphism were obtained. The average number of alleles (Na), average number of effective alleles (Ne), average Shannon’s diversity index (I), average observed heterozygosity (Ho), average expected heterozygosity (He), fixation index (F) and polymorphic information content (PIC) were 11.623, 4.098, 1.626, 0.516, 0.696, 0.232 and 0.671, respectively. Nineteen EST-SSR markers were used to study the genetic diversity and population structure of A. altissima var. erythrocarpa. The phylogenetic tree, PCoA, and structure analysis all divided the tested resources into two categories, clearly showing the genetic variation between individuals. The population showed high genetic diversity, mainly derived from intraspecific variation. Among nineteen pairs of primers, 4 pairs (p33, p15, p46, p92) could effectively distinguish and be used for fingerprinting of the tested materials. This study is of great significance for genetic diversity analysis and molecular-assisted breeding of A. altissima var. erythrocarpa.

Funder

Hebei Provincial Innovation Ability Promotion Program

Shijiazhuang Science and Technology Research and Development Program

Hebei Provincial High-level Talents Funding Project

Shijiazhuang Science and Technology Plan Project

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3