A calibrated deep learning ensemble for abnormality detection in musculoskeletal radiographs

Author:

He Minliang,Wang Xuming,Zhao YijunORCID

Abstract

AbstractMusculoskeletal disorders affect the locomotor system and are the leading contributor to disability worldwide. Patients suffer chronic pain and limitations in mobility, dexterity, and functional ability. Musculoskeletal (bone) X-ray is an essential tool in diagnosing the abnormalities. In recent years, deep learning algorithms have increasingly been applied in musculoskeletal radiology and have produced remarkable results. In our study, we introduce a new calibrated ensemble of deep learners for the task of identifying abnormal musculoskeletal radiographs. Our model leverages the strengths of three baseline deep neural networks (ConvNet, ResNet, and DenseNet), which are typically employed either directly or as the backbone architecture in the existing deep learning-based approaches in this domain. Experimental results based on the public MURA dataset demonstrate that our proposed model outperforms three individual models and a traditional ensemble learner, achieving an overall performance of (AUC: 0.93, Accuracy: 0.87, Precision: 0.93, Recall: 0.81, Cohen’s kappa: 0.74). The model also outperforms expert radiologists in three out of the seven upper extremity anatomical regions with a leading performance of (AUC: 0.97, Accuracy: 0.93, Precision: 0.90, Recall:0.97, Cohen’s kappa: 0.85) in the humerus region. We further apply the class activation map technique to highlight the areas essential to our model’s decision-making process. Given that the best radiologist performance is between 0.73 and 0.78 in Cohen’s kappa statistic, our study provides convincing results supporting the utility of a calibrated ensemble approach for assessing abnormalities in musculoskeletal X-rays.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3