The oil removal and the characteristics of changes in the composition of bacteria based on the oily sludge bioelectrochemical system

Author:

Guo Haiying,Tang Shanfa,Xie Shuixiang,Wang Penghua,Huang Chunfeng,Geng Xiaoheng,Jia Xinlei,Huo Hongjun,Li Xueping,Zhang Jiqiang,Zhang Zaiwang,Fang Jidun

Abstract

AbstractMicrobial fuel cell (MFC) technology is a simple way to accelerate the treatment of the oily sludge which is a major problem affecting the quality of oil fields and surrounding environment while generating electricity. To investigate the oil removal and the characteristics of changes in the composition of bacteria, sediment microbial fuel cells (SMFCs) supplemented with oily sludge was constructed. The results showed that the degradation efficiency of total petroleum hydrocarbon (TPH) of SMFC treatment was 10.1 times higher than the common anaerobic degradation. In addition, the degradation rate of n-alkanes followed the order of high carbon number > low carbon number > medium carbon number. The odd–even alkane predominance (OEP) increased, indicating that a high contribution of even alkanes whose degradation predominates. The OUT number, Shannon index, AEC index, and Chao1 index of the sludge treated with SMFC (YN2) are greater than those of the original sludge (YN1), showing that the microbial diversity of sludge increased after SMFC treatment. After SMFC treatment the relative abundance of Chloroflexi, Bacteroidia and Pseudomonadales which are essential for the degradation of the organic matter and electricity production increased significantly in YN2. These results will play a crucial role in improving the performance of oily sludge MFC.

Funder

The Open Project Program of State Key Laboratory of Petroleum Pollution Control

Shandong Provincial Natural Science Foundation, China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3