Shale gas geological “sweet spot” parameter prediction method and its application based on convolutional neural network

Author:

Qin Zhengye,Xu Tianji

Abstract

AbstractParameters such as gas content (GAS), porosity (PHI) and total organic carbon (TOC) are key parameters that reveal the shale gas geological “sweet spot” of reservoirs. However, the lack of a three-dimensional high-precision prediction method is not conducive to large-scale exploration of shale gas. Although the parameter prediction accuracy based on well logging data is relatively high, it is only a single point longitudinal feature. On the basis of prestack inversion of reservoir information such as P-wave velocity and density, high-precision and large-scale “sweet spot” spatial distribution predictions can be realized. Based on the fast growing and widely used deep learning methods, a one-dimensional convolutional neural network (1D-CNN) “sweet spot” parameter prediction method is proposed in this paper. First, intersection analysis is carried out for various well logging information to determine the sensitive parameters of geological “sweet spot”. We propose a new standardized preprocessing method based on the characteristics of the well logging data. Then, a 1D-CNN framework is designed, which can meet the parameter prediction of both depth-domain well logging data and time-domain seismic data. Third, well logging data is used to train a high-precision and robust geological “sweet spot” prediction model. Finally, this method was applied to the WeiRong shale gas field in Sichuan Basin to achieve a high-precision prediction of geological “sweet spots” in the Wufeng–Longmaxi shale reservoir.

Funder

Sichuan Science and Technology Plan Project

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3