Detecting cognitive traits and occupational proficiency using EEG and statistical inference

Author:

Mikheev Ilya,Steiner Helen,Martynova Olga

Abstract

AbstractMachine learning (ML) is widely used in classification tasks aimed at detecting various cognitive states or neurological diseases using noninvasive electroencephalogram (EEG) time series. However, successfully detecting specific cognitive skills in a healthy population, independent of subject, remains challenging. This study compared the subject-independent classification performance of three different pipelines: supervised and Riemann projections with logistic regression and handcrafted power spectral features with light gradient boosting machine (LightGBM). 128-channel EEGs were recorded from 26 healthy volunteers while they solved arithmetic, logical, and verbal tasks. The participants were divided into two groups based on their higher education and occupation: specialists in mathematics and humanities. The balanced accuracy of the education type was significantly above chance for all pipelines: 0.84–0.89, 0.85–0.88, and 0.86–0.88 for each type of task, respectively. All three pipelines allowed us to distinguish mathematical proficiency based on learning experience with different trade-offs between performance and explainability. Our results suggest that ML approaches could also be effective for recognizing individual cognitive traits using EEG.

Funder

National Research University Higher School of Economics

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3