Machine-learning-based predictions of imprinting quality using ensemble and non-linear regression algorithms

Author:

Yarahmadi Bita,Hashemianzadeh Seyed Majid,Milani Hosseini Seyed Mohammad-Reza

Abstract

AbstractThe molecularly imprinted polymers are artificial polymers that, during the synthesis, create specific sites for a definite purpose. These polymers due to their characteristics such as stability, easy of synthesis, reproducibility, reusability, high accuracy, and selectivity have many applications. However, the variety of the functional monomers, templates, solvents, and synthesis conditions like pH, temperature, the rate of stirring, and time, limit the selectivity of imprinting. The Practical optimization of the synthetic conditions has many drawbacks, including chemical compound usage, equipment requirements, and time costs. The use of machine learning (ML) for the prediction of the imprinting factor (IF), which indicates the quality of imprinting is a very interesting idea to overcome these problems. The ML has many advantages, for example a lack of human error, high accuracy, high repeatability, and prediction of a large amount of data in the minimum time. In this research, ML was used to predict the IF using non-linear regression algorithms, including classification and regression tree, support vector regression, and k-nearest neighbors, and ensemble algorithms, like gradient boosting (GB), random forest, and extra trees. The data sets were obtained practically in the laboratory, and inputs, included pH, the type of the template, the type of the monomer, solvent, the distribution coefficient of the MIP (KMIP), and the distribution coefficient of the non-imprinted polymer (KNIP). The mutual information feature selection method was used to select the important features affecting the IF. The results showed that the GB algorithm had the best performance in predicting the IF, and using this algorithm, the maximum R2 value (R2 = 0.871), and the minimum mean absolute error (MAE = − 0.982), and mean square error were obtained (MSE = − 2.303).

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3