Development of isoniazid electrochemical sensor using nickel ferrite - nitrogen and sulfur co-doped graphene quantum dot nanocomposite as a new electrode modifier

Author:

Ahsani Mohammad Kazem,Ahour Fatemeh,Asghari Elnaz

Abstract

AbstractThis work reports the synthesis of nickel ferrite decorated nitrogen and sulfur co-doped graphene quantum dot (NF@N, S:GQD) and its use as an electrode modifier. The developed NF@N, S:GQD modified glassy carbon electrode (NF@N, S:GQD/GCE) was applied to assess isoniazid (INZ) concentration based on its oxidation at the surface of the proposed electrode. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used as appropriate electrochemical techniques to study the electrochemical behavior of INZ and determine it. Based on combined evidence from surveys, research, and personal results, it is thought that the combination of nickel ferrite and doped graphene quantum dots can synergistically affect results, leading to increased sensitivity and reduced detection limits. This is probably mainly due to the high electrical conductivity of N, S-GQD structure, the electrocatalytic effect of nickel ferrite, and increased surface area resulting from the nano size of the modifier. The optimum conditions for preparing of the modified electrode and determination of INZ are selected by performing electrochemical experiments. The voltammetric response of the sensor is linear from 0.3 to 40 nM INZ under optimal conditions and the detection limit of the sensor is 0.1 nM. The validity and performance of the prepared sensor were confirmed by determining the amount of INZ in the drug and urine as real samples. The composite of doped nanoparticles and nickel ferrite is an innovative modification material to create electrochemical sensors with high sensitivity and selectivity that can be used in pharmaceutical applications.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3