SLE Plasma Profiling Identifies Unique Signatures of Lupus Nephritis and Discoid Lupus

Author:

Smith Michael A.,Henault Jill,Karnell Jodi L.,Parker Melissa L.,Riggs Jeffrey M.,Sinibaldi Dominic,Taylor Devon K.,Ettinger Rachel,Grant Ethan P.,Sanjuan Miguel A.,Kolbeck Roland,Petri Michelle A.,Casey Kerry A.ORCID

Abstract

Abstract Systemic lupus erythematosus (SLE) impacts multiple organ systems, although the causes of many individual SLE pathologies are poorly understood. This study was designed to elucidate organ-specific inflammation by identifying proteins that correlate with SLE organ involvement and to evaluate established biomarkers of disease activity across a diverse patient cohort. Plasma proteins and autoantibodies were measured across seven SLE manifestations. Comparative analyses between pathologies and correlation with the SLE Disease Activity Index (SLEDAI) were used to identify proteins associated with organ-specific and composite disease activity. Established biomarkers of composite disease activity, SLE-associated antibodies, type I interferon (IFN), and complement C3, correlated with composite SLEDAI, but did not significantly associate with many individual SLE pathologies. Two clusters of proteins were associated with renal disease in lupus nephritis samples. One cluster included markers of infiltrating leukocytes and the second cluster included markers of tissue remodelling. In patients with discoid lupus, a distinct signature consisting of elevated immunoglobulin A autoantibodies and interleukin-23 was observed. Our findings indicate that proteins from blood samples can be used to identify protein signatures that are distinct from established SLE biomarkers and SLEDAI and could be used to conveniently monitor multiple inflammatory pathways present in different organ systems.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3