Detection of Alcoholic EEG signal using LASSO regression with metaheuristics algorithms based LSTM and enhanced artificial neural network classification algorithms

Author:

Manivannan Gowri Shankar,Mani Kalaiyarasi,Rajaguru Harikumar,Talawar Satish V.

Abstract

AbstractThe world has a higher count of death rates as a result of Alcohol consumption. Identification is possible because Alcoholic EEG waves have a certain behavior that is totally different compared to the non-alcoholic individual. The available approaches take longer to provide the feedback because they analyze the data manually. For this reason, in the present paper we propose a novel approach applied to detect alcoholic EEG signals automatically by using deep learning methods. Our strategy has advantages as far as fast detection is concerned; hence people can help immediately when there is a need. The potential for a significant decrease in deaths from alcohol poisoning and improvement to public health is presented by this advancement. In order to create clusters and classify the alcoholic EEG signals, this research uses a cascaded process. To begin with, an initial clustering and feature extraction is done by LASSO regression. After that, a variety of meta-heuristics algorithms like Particle Swarm Optimization (PSO), Binary Coding Harmony Search (BCHS) as well as Binary Dragonfly Algorithm (BDA) are employed for feature minimization. When this method is used, normal and alcoholic EEG signals may be differentiated using non-linear features. PSO, BCHS, and BDA features allow for estimation of statistical parameters through t-test, Friedman statistic test, Mann-Whitney U test, and Z-Score with corresponding p-values for alcoholic EEG signals. Lastly, classification is done by the use of support vector machines (SVM) (including linear, polynomial, and Gaussian kernels), random forests, artificial neural networks (ANN), enhanced artificial neural networks (EANN), and LSTM models. Results showed that LASSO regression with BDA-based EANN proposed classifier have a classification accuracy of 99.59%, indicating that our method is highly accurate at classifying alcoholic EEG signals.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3