Design and characterization of an acoustic composite lens with high-intensity and directionally controllable focusing

Author:

Sun Hongyu,Wang Shen,Huang Songling,Peng Lisha,Wang Qing,Zhao Wei

Abstract

AbstractAcoustic orientation and bunching methods, which include the radiation surface expansion, ultrasonic demodulation, multiunit coherence, phased arrays and acoustic lenses, can be used to manipulate and focus sound waves. Recently, focusing systems composed of acoustic lenses have been found to offer high controllability and focusing intensity. In this paper, a newly designed composite acoustic lens that can achieve wave convergence is proposed by assembling a lattice array of concave hexagonal (CH)-shaped rods. In comparison with the latest published work, the new CH structure improves upon the focusing capability of traditional acoustic lenses while retaining their advantages in terms of 3-D underwater focusing. Simulated and experimental results show that a lens with the CH structure has good focusing intensity and can focus acoustic waves over a wide range of incidence angles without losing its functionality. With its good focusing capabilities, this new composite lens may open the door to a broad range of applications, including high-precision nondestructive testing (NDT), high-efficiency medical treatment and multidirectional underwater focusing.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3