Task-related, intrinsic oscillatory and aperiodic neural activity predict performance in naturalistic team-based training scenarios

Author:

Cross Zachariah R.,Chatburn Alex,Melberzs Lee,Temby Philip,Pomeroy Diane,Schlesewsky Matthias,Bornkessel-Schlesewsky Ina

Abstract

AbstractEffective teams are essential for optimally functioning societies. However, little is known regarding the neural basis of two or more individuals engaging cooperatively in real-world tasks, such as in operational training environments. In this exploratory study, we recruited forty individuals paired as twenty dyads and recorded dual-EEG at rest and during realistic training scenarios of increasing complexity using virtual simulation systems. We estimated markers of intrinsic brain activity (i.e., individual alpha frequency and aperiodic activity), as well as task-related theta and alpha oscillations. Using nonlinear modelling and a logistic regression machine learning model, we found that resting-state EEG predicts performance and can also reliably differentiate between members within a dyad. Task-related theta and alpha activity during easy training tasks predicted later performance on complex training to a greater extent than prior behaviour. These findings complement laboratory-based research on both oscillatory and aperiodic activity in higher-order cognition and provide evidence that theta and alpha activity play a critical role in complex task performance in team environments.

Funder

Defence Science and Technology Group

Australian Research Council

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3