A pan-cancer analysis of potassium channel tetramerization domain containing 12 in human cancer

Author:

Liu Pan,Liu Zhilan,Luo Qiankun,Fu Qiang,Zhang Xu,Yu Pengfei,Zhou Shuai,Wang Yingying,Zhang Jiali,Chen Song,Zhang Hongwei,Zhu Qinghai,Qin Tao

Abstract

AbstractAbnormal expression of the potassium channel tetramerization domain containing 12 (KCTD12) is closely related to the occurrence and development of various tumors, but a pan-cancer analysis of KCTD12 has not yet been conducted. We explored the association between KCTD12 and more than 30 human malignancies using The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. First, the mRNA and protein levels of KCTD12 were examined and their correlations with tumor stage and survival were explored. Second, we analyzed the infiltration of CD8+ and CD4+ T cells and cancer-associated fibroblasts in tumors and explored the correlation between KCTD12 expression and tumor cell stemness, genomic heterogeneity, and diagnostic specificity. Finally, we explored the molecular mechanisms associated with KCTD12 using KEGG/GO analysis. The results showed that KCTD12 mRNA and protein expression levels decreased in most tumors was significantly associated with the prognosis of tumor patients, and the phosphorylation level of KCTD12 decreased in several tumors, such as S200 and T196, pancreatic adenocarcinoma (PAAD), lung adenocarcinoma (LUAD), and breast invasive cancer (BRCA). The expression of KCTD12 was positively correlated with the degree of cancer-associated fibroblasts infiltration in cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), head and neck squamous cell carcinoma (HNSC), PAAD, and stomach adenocarcinoma (STAD). The relationship between KCTD12 expression and CD8+ and CD4+ T cell infiltration was also clarified. KCTD12 showed high diagnostic sensitivity for various types of tumors and may be involved in tumor cell biology by affecting tumor cell stemness, tumor burden, and other characteristics. Finally, we analyzed the molecular functions of KCTD12 and possible KEGG/GO signaling pathways. In this study, we developed a biological marker for diagnosis, prognosis, and immune infiltration of the pan-cancers.

Funder

Medical Science and Technology project of Henan Province

Henan Provincial Department of Science and Technology Project

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3