Author:
Campajola Carlo,Gangi Domenico Di,Lillo Fabrizio,Tantari Daniele
Abstract
AbstractA common issue when analyzing real-world complex systems is that the interactions between their elements often change over time. Here we propose a new modeling approach for time-varying interactions generalising the well-known Kinetic Ising Model, a minimalistic pairwise constant interactions model which has found applications in several scientific disciplines. Keeping arbitrary choices of dynamics to a minimum and seeking information theoretical optimality, the Score-Driven methodology allows to extract from data and interpret the presence of temporal patterns describing time-varying interactions. We identify a parameter whose value at a given time can be directly associated with the local predictability of the dynamics and we introduce a method to dynamically learn its value from the data, without specifying parametrically the system’s dynamics. We extend our framework to disentangle different sources (e.g. endogenous vs exogenous) of predictability in real time, and show how our methodology applies to a variety of complex systems such as financial markets, temporal (social) networks, and neuronal populations.
Funder
Nationalfonds zur Förderung der Wissenschaftlichen Forschung
H2020 European Institute of Innovation and Technology
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献