Yeast cell detection using fuzzy automatic contrast enhancement (FACE) and you only look once (YOLO)

Author:

Huang Zheng-Jie,Patel Brijesh,Lu Wei-Hao,Yang Tz-Yu,Tung Wei-Cheng,Bučinskas Vytautas,Greitans Modris,Wu Yu-Wei,Lin Po Ting

Abstract

AbstractIn contemporary biomedical research, the accurate automatic detection of cells within intricate microscopic imagery stands as a cornerstone for scientific advancement. Leveraging state-of-the-art deep learning techniques, this study introduces a novel amalgamation of Fuzzy Automatic Contrast Enhancement (FACE) and the You Only Look Once (YOLO) framework to address this critical challenge of automatic cell detection. Yeast cells, representing a vital component of the fungi family, hold profound significance in elucidating the intricacies of eukaryotic cells and human biology. The proposed methodology introduces a paradigm shift in cell detection by optimizing image contrast through optimal fuzzy clustering within the FACE approach. This advancement mitigates the shortcomings of conventional contrast enhancement techniques, minimizing artifacts and suboptimal outcomes. Further enhancing contrast, a universal contrast enhancement variable is ingeniously introduced, enriching image clarity with automatic precision. Experimental validation encompasses a diverse range of yeast cell images subjected to rigorous quantitative assessment via Root-Mean-Square Contrast and Root-Mean-Square Deviation (RMSD). Comparative analyses against conventional enhancement methods showcase the superior performance of the FACE-enhanced images. Notably, the integration of the innovative You Only Look Once (YOLOv5) facilitates automatic cell detection within a finely partitioned grid system. This leads to the development of two models—one operating on pristine raw images, the other harnessing the enriched landscape of FACE-enhanced imagery. Strikingly, the FACE enhancement achieves exceptional accuracy in automatic yeast cell detection by YOLOv5 across both raw and enhanced images. Comprehensive performance evaluations encompassing tenfold accuracy assessments and confidence scoring substantiate the robustness of the FACE-YOLO model. Notably, the integration of FACE-enhanced images serves as a catalyst, significantly elevating the performance of YOLOv5 detection. Complementing these efforts, OpenCV lends computational acumen to delineate precise yeast cell contours and coordinates, augmenting the precision of cell detection.

Funder

Research Council of Lithuania

State Education Development Agency Republic of Latvia

Taipei Medical University-National Taiwan University of Science and Technology Joint Research Program

Ministry of Science and Technology, Taiwan

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Vision-Based Micro-Manipulation System;Applied Sciences;2023-12-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3