A self-supervised framework for cross-modal search in histopathology archives using scale harmonization

Author:

Maleki Danial,Rahnamayan Shahryar,Tizhoosh H. R.

Abstract

AbstractThe exponential growth of data across various medical domains has generated a substantial demand for techniques to analyze multimodal big data. This demand is particularly pronounced in fields such as computational pathology due to the diverse nature of the tissue. Cross-modal retrieval aims to identify a common latent space where different modalities, such as image-text pairs, exhibit close alignment. The primary challenge, however, often lies in the representation of tissue features. While language models can be trained relatively easily, visual models frequently struggle due to the scarcity of labeled data. To address this issue, the innovative concept of harmonization has been introduced, extending the learning scheme distillation without supervision, known as DINO. The harmonization of scale refines the DINO paradigm through a novel patching approach, overcoming the complexities posed by gigapixel whole slide images in digital pathology. Experiments conducted on diverse datasets have demonstrated that the proposed approach significantly enhances cross-modal retrieval in tissue imaging. Moreover, it exhibits vast potential for other fields that rely on gigapixel imaging.

Funder

Mayo Clinic

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3