Evaluation of dosimetric characteristics of a ternary nanocomposite based on High Density Polyethylene/Bismuth Oxide/Graphene Oxide for gamma-rays

Author:

Veiskarami Amir,Sardari Dariush,Malekie Shahryar,Mofrad Farshid Babapour,Kashian Sedigheh

Abstract

AbstractThis research aims to investigate a ternary nanocomposite based on High Density Polyethylene/ Bismuth Oxide/Graphene Oxide (HDPE/Bi2O3/GO) at various concentrations. Solution method was used to fabricate the samples. FESEM-EDX mapping, AFM, TEM, XRD, XPS, FTIR, and TGA/DTG analyses were carried out on the samples. XRD analysis demonstrated a semi-crystalline behavior for the samples. TEM analysis exhibited a cauliflower-like structure of the material. The sample was irradiated by gamma-rays of 60Co source over the dose rate of 30–254 mGy/min and the electric current was measured as the response of the real-time dosimeter. Thus, various dosimetric characteristics were performed, namely linearity, angular dependence, energy dependence, bias-polarity, field size, and repeatability of the data. Results showed that response of the dosimeter was linear in the range of the investigated dose rate. The sensitivity of the 60 wt% Bi2O3 sample was measured as 3.4 nC·mGy−1. The angular response variation was 20% for normal beam incidence. The response of the dosimeter to assess the energy dependency was obtained as 2.2% at the radiation field of the 137Cs and 60Co beams. The dosimeter response was dependent on the bias-polarity, with maximum discrepancy of 11.1%. The dosimetry response was highly dependent upon the radiation field size. The repeatability of the dosimeter response was measured with standard deviation less than 1%. As well, the dosimeter response during the one-hour irradiation was stable with a standard deviation of 0.66%. Results showed that considering some correction factors, this material can be used for dosimetry of gamma-rays at the therapy level.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3