Projections of surface air temperature required to sustain permafrost and importance of adaptation to climate change in the Daisetsu Mountains, Japan

Author:

Yokohata Tokuta,Iwahana Go,Sone Toshio,Saito Kazuyuki,Ishizaki Noriko N.,Kubo Takahiro,Oguma Hiroyuki,Uchida Masao

Abstract

AbstractPermafrost is known to occur in high mountainous areas such as the Daisetsu Mountains in Japan, which are located at the southernmost limit of the permafrost distribution in the world. In this study, areas with climatic conditions suitable for sustaining permafrost in the Daisetsu Mountains are projected using bias-corrected and downscaled climate model outputs and statistical relationships between surface air temperatures and permafrost areas. Using freezing and thawing indices, the size of the area in the Daisetsu Mountains where climatic conditions were suitable for permafrost were estimated to be approximately 150 km2 in 2010. Under the RCP8.5 scenario, this area is projected to decrease to about 30 km2 by 2050 and it is projected to disappear by around 2070. Under the RCP2.6 scenario, the area is projected to decrease to approximately 20 km2 by 2100. The degradation of mountain permafrost could potentially affect the stability of trekking trails due to slope displacement, and it may also have deleterious effects on current alpine ecosystems. It is therefore important to accurately monitor changes in the mountain ecosystem environment and to implement measures to adapt to an environment that is projected to change significantly in the future.

Funder

Ministry of Education, Culture, Sports, Science and Technology of Japan

Japan Society for the Promotion of Science

National Institute for Environmental Studies

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference84 articles.

1. IPCC, 2013: Annex III: Glossary [Planton, S. (ed.)]. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

2. Gruber, S. Derivation and analysis of a high-resolution estimate of global permafrost zonation. Cryosphere 6, 221–233. https://doi.org/10.5194/tc-6-221-2012 (2012).

3. Hock, R. et al. High Mountain Areas. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate [H.-O. Pörtner, D.C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, N.M. Weyer (eds.)]. (2019)

4. Hilbich, C. et al. Monitoring mountain permafrost evolution using electrical resistivity tomography: A 7-year study of seasonal, annual, and long-term variations at Schilthorn, Swiss Alps. J. Geophys. Res. Earth Surf. https://doi.org/10.1029/2007jf000799 (2008).

5. Bodin, X. et al. Two decades of responses (1986–2006) to climate by the Laurichard rock glacier, French Alps. Permafrost Periglac. Process. 20, 331–344. https://doi.org/10.1002/ppp.665 (2009).

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3