Dual solution framework for mixed convection flow of Maxwell nanofluid instigated by exponentially shrinking surface with thermal radiation

Author:

Shi Qiu-Hong,Ahmed Bilal,Ahmad Sohail,Khan Sami Ullah,Sultan Kiran,Bashir M. Nauman,Khan M. Ijaz,Shah Nehad Ali,Chung Jae Dong

Abstract

AbstractThis paper presents the analysis of transfer of heat and mass characteristics in boundary layer flow of incompressible magnetohydrodynamic Maxwell nanofluid with thermal radiation effects confined by exponentially shrinking geometry. The effects of Brownian motion and thermophoresis are incorporated using Buongiorno model. The partial differential equations of the governing model are converted in non-dimensional track which are numerically inspected with proper appliances of Runge–Kutta fourth order scheme.The significant effects of heat and mass fluxes on the temperature and nanoparticles volume fractions are investigated. By the increases in Lewis number between $$1.0$$ 1.0 to $$2.0$$ 2.0 , the decrease in nanoparticle volume fraction and temperature is noted. With the change in the Prandtl constant that varies between $$0.7$$ 0.7 to $$1.5$$ 1.5 , the nanoparticles volume fraction and temperature are dwindled. Nanoparticles volume fraction and temperature distribution increase is noted with applications of radiation constant. With consequent variation of thermophoresis parameter between $$0.1$$ 0.1 to $$0.8$$ 0.8 , nanoparticles volume fraction and temperature distribution increases. It is also noted that the increase in thermophoresis parameter and Brownian parameter from $$0.1$$ 0.1 to $$0.8$$ 0.8 , nanoparticles volume fraction decreases while temperature distribution increases.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3