Author:
Toman Marinus,Wade John Joseph,Verkhratsky Alexei,Dallas Mark,Bithell Angela,Flanagan Bronac,Harkin Jim,McDaid Liam
Abstract
AbstractAstrocytes display a highly complex, spongiform morphology, with their fine terminal processes (leaflets) exercising dynamic degrees of synaptic coverage, from touching and surrounding the synapse to being retracted from the synaptic region. In this paper, a computational model is used to reveal the effect of the astrocyte-synapse spatial relationship on ionic homeostasis. Specifically, our model predicts that varying degrees of astrocyte leaflet coverage influences concentrations of K+, Na+ and Ca2+, and results show that leaflet motility strongly influences Ca2+ uptake, as well as glutamate and K+ to a lesser extent. Furthermore, this paper highlights that an astrocytic leaflet that is in proximity to the synaptic cleft loses the ability to form a Ca2+ microdomain, whereas when the leaflet is remote from the synaptic cleft, a Ca2+ microdomain can form. This may have implications for Ca2+-dependent leaflet motility.
Funder
Department for the Economy
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献