Pervasive Hydrothermal Events Associated with Large Igneous Provinces Documented by the Columbia River Basaltic Province

Author:

Bindeman I. N,Greber N. D.,Melnik O. E.,Artyomova A. S.,Utkin I. S.,Karlstrom L.,Colón D. P.

Abstract

AbstractThe degree and extent of crustal hydrothermal alteration related to the eruption of large igneous provinces is poorly known and not easily recognizable in the field. We here report a new δ18O dataset for dikes and lavas from the Columbia River Basalt Group (16–15 Ma) in the western USA, and document that dikes on average are 1–2‰ more depleted in δ18O than basalt flows. We show that this observation is best explained with the involvement of heated meteoric  waters during their cooling in the crust. The largest 6–8‰ depletion is found around and inside a 10 m-thick feeder dike that intruded the 125 Ma Wallowa tonalitic batholith. This dike likely operated as a magma conduit for 4–7 years, based on the extent of heating and melting its host rocks. We show that this dike also created a hydrothermal system around its contacts extending up to 100 m into the surrounding bedrock. A model that considers (a) hydrothermal circulation around the dike, (b) magma flow and (c) oxygen isotope exchange rates, suggests that the hydrothermal system operated for ~150 years after the cessation of magma flow. In agreement with a previously published (U-Th)/He thermochronology profile, our model shows that rocks 100 m away from such a dike can be hydrothermally altered. Collectively, our sample set is the first documentation of the widespread hydrothermal alteration of the shallow crust caused by the intrusion of dikes and sills of the Columbia River Basalt Province. It is estimated that heating and hydrothermal alteration of sediments rich in organic matter and carbonates around the dikes and sills releases 18 Gt of greenhouse gases (CH4 and CO2). Furthermore, hydrothermal δ18O depletion of rocks around dikes covers 500–600 km3, which, when scaled to the total CRB province constitutes 31,000 km3 of low-δ18O rocks. These volumes of crust depleted in δ18O are sufficient to explain the abundant low-δ18O magmas in eastern Oregon and western Idaho. This work also demonstrates that the width and magnitude of δ18O depletion around dikes can identify them as feeders. Given this, we here interpret Paleoproterozoic dikes in Karelia with the world’s lowest δ18O depletions (−27.8‰) as feeders to the coeval large igneous province aged 2.2–2.4 Ga that operated under the Snowball Earth glaciation conditions.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3