Machine learning-based estimation of spatial gene expression pattern during ESC-derived retinal organoid development

Author:

Fujimura Yuki,Sakai Itsuki,Shioka Itsuki,Takata Nozomu,Hashimoto Atsushi,Funatomi Takuya,Okuda Satoru

Abstract

AbstractOrganoids, which can reproduce the complex tissue structures found in embryos, are revolutionizing basic research and regenerative medicine. In order to use organoids for research and medicine, it is necessary to assess the composition and arrangement of cell types within the organoid, i.e., spatial gene expression. However, current methods are invasive and require gene editing and immunostaining. In this study, we developed a non-invasive estimation method of spatial gene expression patterns using machine learning. A deep learning model with an encoder-decoder architecture was trained on paired datasets of phase-contrast and fluorescence images, and was applied to a retinal organoid derived from mouse embryonic stem cells, focusing on the master gene Rax (also called Rx), crucial for eye field development. This method successfully estimated spatially plausible fluorescent patterns with appropriate intensities, enabling the non-invasive, quantitative estimation of spatial gene expression patterns within each tissue. Thus, this method could lead to new avenues for evaluating spatial gene expression patterns across a wide range of biology and medicine fields.

Funder

Japan Science and Technology Agency

Japan Agency for Medical Research and Development

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3