High-temperature etching of SiC in SF6/O2 inductively coupled plasma

Author:

Osipov Artem A.,Iankevich Gleb A.,Speshilova Anastasia B.,Osipov Armenak A.,Endiiarova Ekaterina V.,Berezenko Vladimir I.,Tyurikova Irina A.,Tyurikov Kirill S.,Alexandrov Sergey E.

Abstract

AbstractIn this work, we demonstrate an effective way of deep (30 µm depth), highly oriented (90° sidewall angle) structures formation with sub-nanometer surface roughness (Rms = 0.7 nm) in silicon carbide (SiC). These structures were obtained by dry etching in SF6/O2 inductively coupled plasma (ICP) at increased substrate holder temperatures. It was shown that change in the temperature of the substrate holder in the range from 100 to 300 °C leads to a sharp decrease in the root mean square roughness from 153 to 0.7 nm. Along with this, it has been established that the etching rate of SiC also depends on the temperature of the substrate holder and reaches its maximum (1.28 µm/min) at temperatures close to 150 °C. Further temperature increase to 300 °C does not lead to the etching rate rising. The comparison of the results of the thermally stimulated process and the etching with a water-cooled substrate holder (15 °C) is carried out. Plasma optical emission spectroscopy was carried out at different temperatures of the substrate holder.

Funder

Ministry of Science and Higher Education of the Russian Federation

Karlsruhe Institute of Technology

Projekt DEAL

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3