Defining the structural basis for human leukocyte antigen reactivity in clinical transplantation

Author:

Gu Yue,Koh Robynne W. K.,Lai May Ling,Pochinco Denise,Teo Rachel Z. C.,Chan Marieta,Murali Tanusya M.,Liew Chong Wai,Wong Yee Hwa,Gascoigne Nicholas R. J.,Wood Kathryn J.,Lescar Julien,Nickerson Peter,MacAry Paul A.,Vathsala Anantharaman

Abstract

AbstractThe current state-of-the-art technology employed to assess anti-human leukocyte antigen antibodies (Anti-HLA Ab) for donor-recipient matching and patient risk stratification in renal transplantation is the single antigen bead (SAB) assay. However, there are limitations to the SAB assay as it is not quantitative and due to variations in techniques and reagents, there is no standardization across laboratories. In this study, a structurally-defined human monoclonal alloantibody was employed to provide a mechanistic explanation for how fundamental alloantibody biology influences the readout from the SAB assay. Performance of the clinical SAB assay was evaluated by altering Anti-HLA Ab concentration, subclass, and detection reagents. Tests were conducted in parallel by two internationally accredited laboratories using standardized protocols and reagents. We show that alloantibody concentration, subclass, laboratory-specific detection devices, subclass-specific detection reagents all contribute to a significant degree of variation in the readout. We report a significant prozone effect affecting HLA alleles that are bound strongly by the test alloantibody as opposed to those bound weakly and this phenomenon is independent of complement. These data highlight the importance for establishing international standards for SAB assay calibration and have significant implications for our understanding of discordance in previous studies that have analyzed its clinical relevance.

Funder

National University of Singapore, School of Medicine

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3