Abstract
AbstractRegulation of oxidative stress towards origin of favorable internal redox cue plays a decisive role in salinity stress acclimation and least studied in rice and hence is the subject of present investigation. Redox landscaping of seedlings of ten experimental land races of rice of coastal Bangladesh grown under post imbibitional salinity stress (PISS) has been done through characterization of ROS-antioxidant interaction dynamics at metabolic interface, transcriptional reprogramming of redox-regulatory genes along with the assessment of biomarkers of oxidative threat for standardizing redox strategies and quality parameters for screening. The results exhibited a strong correlation between salinity induced redox status (pro-oxidant/antioxidant ratio, efficacy of H2O2 turnover through integrated RboH-Ascorbate–Glutathione/Catalase pathway and estimation of sensitive redox biomarkers of oxidative deterioration) and germination phenotypes of all landraces of rice. Transcript abundance of the marker genes of the enzymes associated with central antioxidant hub for H2O2 processing (CatA, OsAPx2, SodCc2, GRase and RboH) of all experimental landraces of the rice advocate the central role of H2O2 turnover dynamics in regulating redox status and salinity tolerance. Landraces suffering greater loss of abilities of decisive regulation of H2O2 turnover dynamics exhibited threat on the oxidative windows of the germinating seeds under salinity.
Funder
Indian Council for Cultural Relations (ICCR) for India Scholarships
DST-FIST , Government of India
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献