Author:
Toma Antonela,Postavaru Octavian
Abstract
AbstractHigh-power lasers develop high energy per unit time, and as energy curves space, we expect atomic energy levels to change. The fluorescence spectrum is a good measurement of the matrix elements involved in the Rabi oscillation and consequently allows us to determine the scalar curvature. At high Z, electrons oppose ionization even for strong intensities. Because high-power lasers address relativistic atoms, the wave functions involved must be solutions of the Dirac equation in a curved space-time. The paper can be seen as a way to check whether the Einstein’s gravitational theory is valid in the dimension of laboratory.
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献