Statistical evaluation of proxies for estimating the rainfall erosivity factor

Author:

Ma Xiaoqing,Zheng Mingguo

Abstract

AbstractConsidering the high-temporal-resolution rainfall data requirements for calculating the Rainfall Erosivity factor (that is, the R-factor), studies have developed a large number of proxies for the R-factor (PR). This study aims to evaluate 15 widely used proxies, which were developed in various countries using daily, monthly, or yearly rainfall data, in terms of correlation and statistical equality with the R-factor by using the 6-min pluviographic data from 28 stations in Australia. Meng’s test was applied to rank the correlations. Although the Meng’s test indicated that the correlation between Rainfall Erosivity (R) and Rainfall Erosivity calculated by the proxy model (PR) generally increased with a finer time resolution of the rainfall data (in the order of year, month, and day), the 15 PRs under examination were all highly correlated with R (r > 0.62, p < 0.004), implying that all of them can be reasonably used as an R predictor. A direct estimation of the R-factor using PRs produced a mean relative error (MRE), root mean square error (RMSE), and Nash–Sutcliffe efficiency coefficient (NSE) with a mean of 50.0%, 1392 MJ mm ha−1 h−1 a−1, and 0.17, respectively. The linear calibrations improved the accuracy of the estimation and produced an MRE, RMSE, and NSE with a mean of 36.0%, 887 MJ mm ha−1 h−1 a−1, and 0.70, respectively. Finally, suitable proxies for instances where only daily, monthly, or yearly rainfall data are available were recommended.

Funder

Guangdong Foundation for Program of Science and Technology Research

GuangDong Basic and Applied Basic Research Foundation

Guangdong Provincial Science and Technology Project

Meizhou Science and Technology Plan Project

GDAS' Project of Science and Technology Development

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3