Process intensification for the continuous production of an antimicrobial peptide in stably-transformed Sf-9 insect cells

Author:

Käßer Lukas,Rotter Maximilian,Coletta Luca,Salzig DeniseORCID,Czermak PeterORCID

Abstract

AbstractThe antibiotic resistance crisis has prompted research into alternative candidates such as antimicrobial peptides (AMPs). However, the demand for such molecules can only be met by continuous production processes, which achieve high product yields and offer compatibility with the Quality-by-Design initiative by implementing process analytical technologies such as turbidimetry and dielectric spectroscopy. We developed batch and perfusion processes at the 2-L scale for the production of BR033, a cecropin-like AMP from Lucilia sericata, in stably-transformed polyclonal Sf-9 cells. This is the first time that BR033 has been expressed as a recombinant peptide. Process analytical technology facilitated the online monitoring and control of cell growth, viability and concentration. The perfusion process increased productivity by ~ 180% compared to the batch process and achieved a viable cell concentration of 1.1 × 107 cells/mL. Acoustic separation enabled the consistent retention of 98.5–100% of the cells, viability was > 90.5%. The recombinant AMP was recovered from the culture broth by immobilized metal affinity chromatography and gel filtration and was able to inhibit the growth of Escherichia coli K12. These results demonstrate a successful, integrated approach for the development and intensification of a process from cloning to activity testing for the production of new biopharmaceutical candidates.

Funder

Hessen State Ministry of Higher Education, Research and the Arts

Technische Hochschule Mittelhessen

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3