Comparison of artificial intelligence algorithms and their ranking for the prediction of genetic merit in sheep

Author:

Hamadani Ambreen,Ganai Nazir A.,Mudasir Syed,Shanaz Syed,Alam Safeer,Hussain Ishraq

Abstract

AbstractAs the amount of data on farms grows, it is important to evaluate the potential of artificial intelligence for making farming predictions. Considering all this, this study was undertaken to evaluate various machine learning (ML) algorithms using 52-year data for sheep. Data preparation was done before analysis. Breeding values were estimated using Best Linear Unbiased Prediction. 12 ML algorithms were evaluated for their ability to predict the breeding values. The variance inflation factor for all features selected through principal component analysis (PCA) was 1. The correlation coefficients between true and predicted values for artificial neural networks, Bayesian ridge regression, classification and regression trees, gradient boosting algorithm, K nearest neighbours, multivariate adaptive regression splines (MARS) algorithm, polynomial regression, principal component regression (PCR), random forests, support vector machines, XGBoost algorithm were 0.852, 0.742, 0.869, 0.915, 0.781, 0.746, 0.742, 0.746, 0.917, 0.777, 0.915 respectively for breeding value prediction. Random forests had the highest correlation coefficients. Among the prediction equations generated using OLS, the highest coefficient of determination was 0.569. A total of 12 machine learning models were developed from the prediction of breeding values in sheep in the present study. It may be said that machine learning techniques can perform predictions with reasonable accuracies and can thus be viable alternatives to conventional strategies for breeding value prediction.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Assessment of subvisible particles in biopharmaceuticals with image feature extraction and machine learning;Chemometrics and Intelligent Laboratory Systems;2024-02

2. A meshwork of artificial intelligence and biology;A Biologist�s Guide to Artificial Intelligence;2024

3. Artificial intelligence in animal farms for management and breeding;A Biologist�s Guide to Artificial Intelligence;2024

4. Advancing precision agriculture through artificial intelligence;A Biologist�s Guide to Artificial Intelligence;2024

5. Applications and impact of artificial intelligence in veterinary sciences;A Biologist�s Guide to Artificial Intelligence;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3