Mathematical modeling and machine learning-based optimization for enhancing biofiltration efficiency of volatile organic compounds

Author:

Sulaiman Muhammad,Khalaf Osamah Ibrahim,Khan Naveed Ahmad,Alshammari Fahad Sameer,Hamam Habib

Abstract

AbstractBiofiltration is a method of pollution management that utilizes a bioreactor containing live material to absorb and destroy pollutants biologically. In this paper, we investigate mathematical models of biofiltration for mixing volatile organic compounds (VOCs) for instance hydrophilic (methanol) and hydrophobic ($$\alpha$$ α -pinene). The system of nonlinear diffusion equations describes the Michaelis-Menten kinetics of the enzymic chemical reaction. These models represent the chemical oxidation in the gas phase and mass transmission within the air-biofilm junction. Furthermore, for the numerical study of the saturation of $$\alpha$$ α -pinene and methanol in the biofilm and gas state, we have developed an efficient supervised machine learning algorithm based on the architecture of Elman neural networks (ENN). Moreover, the Levenberg-Marquardt (LM) optimization paradigm is used to find the parameters/ neurons involved in the ENN architecture. The approximation to a solutions found by the ENN-LM technique for methanol saturation and $$\alpha$$ α -pinene under variations in different physical parameters are allegorized with the numerical results computed by state-of-the-art techniques. The graphical and statistical illustration of indications of performance relative to the terms of absolute errors, mean absolute deviations, computational complexity, and mean square error validates that our results perfectly describe the real-life situation and can further be used for problems arising in chemical engineering.

Funder

Natural Sciences and Engineering Research Council of Canada

New Brunswick Innovation Foundation

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3