High-resolution high-throughput thermal neutron tomographic imaging of fossiliferous cave breccias from Sumatra

Author:

Smith Holly E.ORCID,Bevitt Joseph J.,Zaim Jahdi,Rizal Yan,Aswan ,Puspaningrum Mika Rizki,Trihascaryo Agus,Price Gilbert J.ORCID,Webb Gregory E.ORCID,Louys JulienORCID

Abstract

AbstractWe employ high-throughput thermal-neutron tomographic imaging to visualise internal diagnostic features of dense fossiliferous breccia from three Pleistocene cave localities in Sumatra, Indonesia. We demonstrate that these seemingly homogeneous breccias are an excellent source of data to aid in determining taphonomic and depositional histories of complex depositional sites such as tropical caves. X-ray Computed Tomographic (CT) imaging is gaining importance amongst palaeontologists as a non-destructive approach to studying fossil remains. Traditional methods of fossil preparation risk damage to the specimen and may destroy contextual evidence in the surrounding matrix. CT imaging can reveal the internal composition and structure of fossils contained within consolidated sediment/rock matrices prior to any destructive mechanical or chemical preparation. Neutron computed tomography (NCT) provides an alternative contrast to X-rays, and in some circumstances, is capable of discerning denser matrices impenetrable to or yielding no contrast with CT imaging. High-throughput neutron imaging reduces neutron fluence during scanning which means there is less residual neutron-induced radioactivation in geological samples; allowing for earlier subsequent analyses. However, this approach remains unutilised in palaeontology, archaeology or geological surveys. Results suggest that the primary agents in the formation of the breccias and concentration of incorporated vertebrate remains are several rapid depositional phases of water and sediment gravity flow. This study highlights the potential for future analyses of breccia deposits in palaeontological studies in caves around the world.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3