The enhanced photocatalytic performance of CPAA doping with different concentrations of Titanium oxide nanocomposite against MB dyes under simulated sunlight irradiations

Author:

Sayed Marwa M.,Aboraia Abdelaziz M.,Kasem Yara A.,Elewa Nancy N.,Ismail Yasser A. M.,Aly Kamal I.

Abstract

AbstractThe pure conjugated polyarylene azomethine (CPAA) and its nanocomposites (CPAA-TiO2) with different concentrations of TiO2 nanoparticles were successfully prepared by in-situ technique and analyzed by different advanced techniques. XRD has confirmed the structural properties and crystallinity of (CPAA) and nanocomposites. The SEM clearly shows that the (CPAA) is uniform and homogeneous, with tightly connected aggregate layers in shape. However, the amount of TiO2 in the nanocomposites greatly affects their morphology, revealing structural differences and indicating a reaction between (CPAA) and TiO2, especially at a higher concentration of 5% TiO2. A new composite of (CPAA) was introduced and the photocatalytic effect for MB was studied. The removal efficiency of (pure-CPAA) over MB dye under simulated sunlight was 62%. However, (CPAA-TiO2 1%) destroyed 90% of MB dyes. It was discovered that the low band gap of (CPAA-TiO2 1% (2.84 eV)) accelerates high electron–hole recombination, increasing photocatalytic activity.

Funder

This work was partially supported by the Science, Technology & Innovation Funding (STIFA) , Egypt.

New Valley University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3