Exact dimer phase with anisotropic interaction for one dimensional magnets

Author:

Xu Hong-Ze,Zhang Shun-Yao,Guo Guang-Can,Gong Ming

Abstract

AbstractWe report the exact dimer phase, in which the ground states are described by product of singlet dimer, in the extended XYZ model by generalizing the isotropic Majumdar–Ghosh model to the fully anisotropic region. We demonstrate that this phase can be realized even in models when antiferromagnetic interaction along one of the three directions. This model also supports three different ferromagnetic (FM) phases, denoted as x-FM, y-FM and z-FM, polarized along the three directions. The boundaries between the exact dimer phase and FM phases are infinite-fold degenerate. The breaking of this infinite-fold degeneracy by either translational symmetry breaking or $${\mathbb {Z}}_2$$ Z 2 symmetry breaking leads to exact dimer phase and FM phases, respectively. Moreover, the boundaries between the three FM phases are critical with central charge $$c=1$$ c = 1 for free fermions. We characterize the properties of these boundaries using entanglement entropy, excitation gap, and long-range spin–spin correlation functions. These results are relevant to a large number of one dimensional magnets, in which anisotropy is necessary to isolate a single chain out from the bulk material. We discuss the possible experimental signatures in realistic materials with magnetic field along different directions and show that the anisotropy may resolve the disagreement between theory and experiments based on isotropic spin-spin interactions.

Funder

National Natural Science Foundation of China

National Key Re-search and Development Program in China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3