Anthropogenic influence on extreme temperature and precipitation in Central Asia

Author:

Fallah Bijan,Russo Emmanuele,Menz Christoph,Hoffmann Peter,Didovets Iulii,Hattermann Fred F.

Abstract

AbstractWe investigate the contribution of anthropogenic forcing to the extreme temperature and precipitation events in Central Asia (CA) during the last 60 years. We bias-adjust and downscale two Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) ensemble outputs, with natural (labelled as hist-nat, driven only by solar and volcanic forcing) and natural plus anthropogenic forcing (labelled as hist, driven by all-forcings), to $$0.25^{\circ } \times 0.25 ^{\circ }$$ 0 . 25 × 0 . 25 spatial resolution. Each ensemble contains six models from ISIMIP, based on the Coupled Model Inter-comparison Project phase 6 (CMIP6). The presented downscaling methodology is necessary to create a reliable climate state for regional climate impact studies. Our analysis shows a higher risk of extreme heat events (factor 4 in signal-to-noise ratio) over large parts of CA due to anthropogenic influence. Furthermore, a higher likelihood of extreme precipitation over CA, especially over Kyrgyzstan and Tajikistan, can be attributed to anthropogenic forcing (over 100$$\%$$ % changes in intensity and 20$$\%$$ % in frequency). Given that these regions show a high risk of rainfall-triggered landslides and floods during historical times, we report that human-induced climate warming can contribute to extreme precipitation events over vulnerable areas of CA. Our high-resolution data set can be used in impact studies focusing on the attribution of extreme events in CA and is freely available to the scientific community.

Funder

German Foreign Office

Potsdam-Institut für Klimafolgenforschung (PIK) e.V.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3