On strata damage and stress disturbance induced by coal mining based on physical similarity simulation experiments

Author:

Yang Yi,Li Yingchun,Wang Lujun,Wu Yang

Abstract

AbstractExtensive studies have been conducted on the movement of overlying strata when a single coal seam is mined. However, structural characteristics and associated stress field variation of the overlying strata over multiple coal seam mining remain unclear. Here we performed physical modelling experiments analogous to No. 42108 working face of Buertai coal mine, Shendong coalfield, where No. 22 coal seam (2.9 m thickness) was mined first, preceding No. 42 upper coal seam (6.1 m thickness) with an inter-coal-seam distance of 72.8 m. We employed DIC (digital image correlation) measurement and systematically-laid pressure cells to visualize the overlying strata movement and monitor stress field variations over multiple coal seam mining. We found that the stress of the inter-coal-seam strata increased significantly in the late mining stage of No. 22 coal seam due to the strata collapse, and culminated after compaction of the caved blocks. The inter-coal-seam strata stress gradually decreased over mining of No. 42 upper coal seam and arrived at zero after the inter-coal-seam strata collapsed. The mining of No. 42 upper coal seam aggravated the roof settlement of No. 22 coal seam; and the floor stress was noticeably lower than that of No. 22 coal seam due to the pressure-relief caused by the former mining activity. Our physical modelling findings advanced our understanding on structural characteristics and stress evolutions of overlying strata over multiple coal seam mining and offered guidance for prediction and mitigation of strata movement associated disasters in underground coal mining with geomechanical and mining conditions similar to those of Buertai coal mine.

Funder

China Energy Investment Group

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3