Effects of organic fertilizer proportion on the distribution of soil aggregates and their associated organic carbon in a field mulched with gravel

Author:

Du Shaoping,Ma Zhongming,Chen Juan,Xue Liang,Tang Chaonan,Shareef Tawheed M. E.,Siddique Kadambot H. M.

Abstract

AbstractGravel and sand mulching is an indigenous technology that has been used for increasing soil temperature and improving crop yield and water use efficiency for at least 300 years in northwestern China. However, long-term application of inorganic fertilizer with gravel and sand mulch could decrease the soil organic carbon content, and how to improve soil fertility under gravel and sand mulching remains largely unknown. Thus, we evaluated the effects of the application of inorganic (chemical) and organic (manure) fertilizers on the distribution of soil aggregates and their associated organic carbon in a field mulched with gravel and sand. A 5-year (2014–2018) field experiment was conducted in the arid region of northwestern China. Total organic carbon (TOC), permanganate oxidizable carbon (POC), TOC reserves in soil aggregates with different particle sizes, and watermelon (Citrullus lanatus) productivity in gravel-mulched fields were analysed for the following six fertilization modes: no N fertilizer input as a control (CK), N fertilizer without organic fertilizer (CF), and organic fertilizer replacing 25%, 50%, 75%, and 100% of mineral nitrogen (recorded as OF-25%, OF-50%, OF-75% and OF-100%, respectively). The results showed that, higher manure to nitrogen fertilizer ratios were positively correlated with the percentage of soil macroaggregates (> 0.25 mm), mean weight diameter (MWD), TOC and POC concentrations, and their ratios in different particle sizes. Compared with CF, the treatments with 50% to 100% organic fertilizer significantly increased TOC storage (5.91–7.84%) in the soil profile (0–20 cm). Moreover, the CF treatment did not increase SOC concentrations or TOC storage, compared with CK. The fruit yield (2014–2018) of watermelon significantly increased by an average of 31.38% to 45.70% in the treatments with 50% to 100% organic fertilizer, respectively, compared with CF. Our results suggest that the partial replacement of chemical fertilizer with organic manure (OF-50%, OF-75% and OF-100%) could increase the proportion of macroaggregates, POC and TOC concentrations, and TOC stock in aggregates with different particle size and improve the yield of watermelon in the gravel fields of arid northwestern China mulched with gravel and sand.

Funder

the National Natural Science Foundation of China project

China Agriculture Research System for Watermelon and Melon

National Key Research and Development Program of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3