Author:
Kuznietsova Halyna,Dziubenko Natalia,Paliienko Konstantin,Pozdnyakova Natalia,Krisanova Natalia,Pastukhov Artem,Lysenko Tetiana,Dudarenko Marina,Skryshevsky Valeriy,Lysenko Vladimir,Borisova Tatiana
Abstract
AbstractHere, a comparative toxicity assessment of precursor carbon dots from coffee waste (cofCDs) obtained using green chemistry principles and Gd-doped nanohybrids (cofNHs) was performed using hematological, biochemical, histopathological assays in vivo (CD1 mice, intraperitoneal administration, 14 days), and neurochemical approach in vitro (rat cortex nerve terminals, synaptosomes). Serum biochemistry data revealed similar changes in cofCDs and cofNHs-treated groups, i.e. no changes in liver enzymes' activities and creatinine, but decreased urea and total protein values. Hematology data demonstrated increased lymphocytes and concomitantly decreased granulocytes in both groups, which could evidence inflammatory processes in the organism and was confirmed by liver histopathology; decreased red blood cell-associated parameters and platelet count, and increased mean platelet volume, which might indicate concerns with platelet maturation and was confirmed by spleen histopathology. So, relative safety of both cofCDs and cofNHs for kidney, liver and spleen was shown, whereas there were concerns about platelet maturation and erythropoiesis. In acute neurotoxicity study, cofCDs and cofNHs (0.01 mg/ml) did not affect the extracellular level of L-[14C]glutamate and [3H]GABA in nerve terminal preparations. Therefore, cofNHs demonstrated minimal changes in serum biochemistry and hematology assays, had no acute neurotoxicity signs, and can be considered as perspective biocompatible non-toxic theragnostic agent.
Funder
EU Horizon 2020 Research and Innovation Staff Exchange Programme (RISE) under Marie Skłodowska-Curie Action
The National Research Foundation of Ukraine
Publisher
Springer Science and Business Media LLC
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献