Polyelectrolyte membranes based on phosphorylated-PVA/cellulose acetate for direct methanol fuel cell applications: synthesis, instrumental characterization, and performance testing

Author:

Khalaf Mahmoud,Saeed Ahmed M.,Ali Ahmed I.,Kamoun Elbadawy A.,Fahmy Alaa

Abstract

AbstractDesigning and synthesis of cost-effective and improved methanol permeable and proton conductive membranes are the main challenges for preparation of polymeric electrolyte membrane (PEM). Herein, a cost-effective PEM membrane based on phosphorylated polyvinyl alcohol (PVA)-grafted-cellulose acetate (CA) was prepared by a solution-casting technique. Water and methanol uptakes of phosphorylated PVA/CA membranes were characterized as function with the molar ratio of CA. Additionally, structure and morphology of phosphorylated PVA/CA (Ph-PVA/CA) membranes were verified by FT-IR analysis, SEM investigation. Furthermore, ion exchange capacity (IEC), proton conductivity and methanol permeation of Ph-PVA/CA membranes were examined based on the concentration of OPA basically. The results manifested a perceptible improvement in proton conductivity from 0.035 to 0.05 S/cm at 25 and 70 °C, respectively using 600 μL of OPA, and IEC of 2.1 meq/g using 400 μL of OPA at ambient temperature. On the other hand, methanol permeability (P = 1.08 × 10–10 cm2/s) was lower than Nafion 117 admirably. The optimum OPA concentration was 200 μL according to conductivity measurements (at 10% PVA, 150 μL GA, and CA 7%). Finally, prepared Ph-PVA/CA membranes exhibited enhancement in critical natures such as proton conductivity and IEC combined with its low-cost materials, which make them excellent candidate as PEM for DMFCs application.

Funder

Al-Azhar University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3