Finding influential nodes in complex networks based on Kullback–Leibler model within the neighborhood

Author:

Wang Guan,Sun Zejun,Wang Tianqin,Li Yuanzhe,Hu Haifeng

Abstract

AbstractAs a research hot topic in the field of network security, the implementation of machine learning, such as federated learning, involves information interactions among a large number of distributed network devices. If we regard these distributed network devices and connection relationships as a complex network, we can identify the influential nodes to find the crucial points for optimizing the imbalance of the reliability of devices in federated learning system. This paper will analyze the advantages and disadvantages of existing algorithms for identifying influential nodes in complex networks, and propose a method from the perspective of information dissemination for finding influential nodes based on Kullback–Leibler divergence model within the neighborhood (KLN). Firstly, the KLN algorithm removes a node to simulate the scenario of node failure in the information dissemination process. Secondly, KLN evaluates the loss of information entropy within the neighborhood after node removal by establishing the KL divergence model. Finally, it assesses the damage influence of the removed node by integrating the network attributes and KL divergence model, thus achieving the evaluation of node importance. To validate the performance of KLN, this paper conducts an analysis and comparison of its results with those of 11 other algorithms on 10 networks, using SIR model as a reference. Additionally, a case study was undertaken on a real epidemic propagation network, leading to the proposal of management and control strategies for daily protection based on the influential nodes. The experimental results indicate that KLN effectively evaluates the importance of the removed node using KL model within the neighborhood, and demonstrate better accuracy and applicability across networks of different scales.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3